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In the paper, thermal processes occurring in a soft tissue subjected to laser irradiation are
analyzed. The bioheat transfer in an axisymmetric domain is described by a dual-phase lag
equation, which takes into account temperature-dependent thermophysical parameters of
the tissue. The source term in this equation is related to laser irradiation, and is determined
by solving the optical diffusion equation. It is assumed that the optical parameters depend
on the Arrhenius integral, which is a measure of the degree of tissue destruction. In the
model, the process of evaporation of water contained in the tissue is also considered.
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1. Introduction

Oncological hyperthermia involves raising the patient’s body temperature in controlled condi-
tions. It is used to support conventional therapies, such as chemotherapy or radiotherapy. The
main goal of the procedure is to induce a state of increased patient temperature, activating the
immune system to eliminate cancer cells from the body. This leads to an increase in the number
of leukocytes and initiates a natural intervention against the tumor (Foster et al., 2020).

Thermal ablation is a procedure aimed at destroying the tumor under the influence of high
temperature. Heat is delivered directly to the tumor using needles or probes, without the need
to surgically open the patient’s body (Barnoon and Bakhshandehfard, 2021). The procedure
is often performed in combination with laparoscopic and ultrasound methods, which allow for
precise localization of the tumor (Giglio et al., 2020) and is performed under anesthesia to relieve
pain. During thermal ablation, probes applied to the tumor are heated to a temperature ranging
from 65◦C to 85◦C for 10 to 15 minutes. Among various heating techniques, the laser-induced
hyperthermia stands out for its precision and non-invasiveness.

Destruction of cancer tissue by laser irradiation is used, among others, in removal of onco-
logical lesions within the liver using laparoscopic methods (Ellebrecht et al., 2018). This process
can be modelled using a dual-phase lag equation, which includes a source component that takes
into account the interaction of laser with biological tissue. To determine this component, an
appropriate mathematical model that describes light propagation in biological tissues must be
selected (Ashley et al., 1995; Dombrovsky and Baillis, 2010; Jacques and Pogue, 2008). One of
such models is the radiative transport equation but, in some cases, it is possible to approximate
the radiative transport equation with the optical diffusion equation, e.g. (Dombrovsky et al.,
2012; Jaunich et al., 2008). Considering that in soft tissues, scattering dominates over absorp-
tion for wavelengths from 650 nm to 1300 nm, the optical diffusion equation was used in this
study. Many articles in the literature are devoted to modelling laser interactions with biological
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tissues. Most of them concern the use of the Pennes equation in combination with the radiative
transport equation or the optical diffusion equation, e.g. (Kim and Guo, 2007; Kim et al., 1996).
Papers using the dual-phase lag equation appear relatively rarely (Majchrzak et al., 2019; Zhou
et al., 2009). Moreover, constant thermophysical and optical parameters of biological tissues are
commonly assumed.
In this paper, the dual-phase lag equation combined with the optical diffusion equation is

used to model the interaction of laser with biological tissues. Additionally, the temperature-
-dependent tissue thermophysical parameters and optical tissue parameters changing with the
Arrhenius integral are taken into account.

2. Mathematical model

An axisymmetric fragment of the liver subjected to laser irradiation is considered, as shown in
Fig. 1. The dual–phase lag equation is based on the following relationship between the heat flux
and temperature gradient (Tzou, 1995)

q(r, z, t+ τq) = −λ(T ) gradT (r, z, t+ τT ) (2.1)

where τq represents the delay in the appearance of heat flux and its associated conduction
through the medium, τT is the delay in the appearance of temperature gradient caused by heat
conduction through structures of a small scale or size, λ is the thermal conductivity coefficient,
T denotes temperature, q is the heat flux, r, z represent geometrical coordinates, and t is a
time. This relationship is called generalized Fourier’s law, because for time delays equal to zero
(τT = τq = 0), one obtains the classical Fourier law.

Fig. 1. An axisymmetric fragment of the liver

The functions T (r, z, t + τT ) and q(r, z, t + τq) are expanded into a Taylor series with an
accuracy to the first derivatives

q(r, z, t) + τq
∂q(r, z, t)

∂t
= λ(T ) gradT (r, z, t) + τTλ(T )

∂[ gradT (r, z, t)]

∂t
(2.2)

As known, the Fourier equation has the following form

c(T )ρ(T )
∂T (r, z, t)

∂t
= − divq(r, z, t) +Q(r, z, t) (2.3)

where c(T ) is the specific heat of tissue, ρ(T ) is mass density and Q(r, z, t) is the source function.
Basing on Eqs. (2.2) and (2.3), after appropriate transformations, the final form of the dual-

-phase lag is obtained (the arguments are omitted for simplicity) (Majchrzak and Stryczyński,
2022)

C(T )
∂T

∂t
+ τq

∂

∂t

[
C(T )

∂T

∂t

]
= div [λ(T ) gradT ] + τT div

[
λ(T )

∂( gradT )

∂t

]
+Q+ τq

∂Q

∂t
(2.4)

where C(T ) = c(T )ρ(T ) is the volumetric thermal capacity, and

Q = w(ψ)cb(Ta − T ) +Qmet(ψ) +Qext (2.5)
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while w(ψ) is the blood perfusion rate, cb is the specific heat of blood, Ta is the arterial tem-
perature, Qmet(ψ) is the metabolic heat source. Qext is the source function related to laser
irradiation, and ψ is the so-called Arrhenius integral (Niemz, 2007)

ψ = ψ(r, z, tf ) = P

tf∫

0

exp
(
−

E

RT (r, z, t)

)
dt (2.6)

where P is the pre-exponential factor, E is the activation energy, R is the universal gas constant,
and [0, tf ] is the time interval under consideration.

It should be emphasized that the calculation of the Arrhenius integral allows us to estimate
the degree of destruction of biological tissue. Thus, a value of damage integral ψ(r, z, tf ) = 1
corresponds to a 63% probability of cell death at a specific point (r, z), while ψ(r, z, tf ) = 4.6
corresponds to 99% probability of cell death at this point. The value ψ(r, z, tf ) = 1 is treated as
extremely important because, from this moment, the tissue coagulation begins (Niemz, 2007).

Because

∂

∂t

[
C(T )

∂T

∂t

]
=
∂C(T )

∂t

∂T

∂t
+ C(T )

∂2T

∂t2
=
dC(T )

dT

(∂T
∂t

)2
+ C(T )

∂2T

∂t2
(2.7)

thus Eq. (2.4) can be written in the form

C(T )
(∂T
∂t
+ τq

∂2T

∂t2

)
+ τq

dC(T )

dT

(∂T
∂t

)2

= div
[
λ(T ) gradT

]
+ τT div

[
λ(T )

∂( gradT )

∂t

]
+Q+ τq

∂Q

∂t

(2.8)

When the biological tissue reaches a temperature of approximately 100◦C then in the mathe-
matical model of the heating process, the phenomenon of water evaporation within the tissue
should be taken into account. In this case, an additional source term related to the evaporation
is introduced. This term is denoted as Qevap(T ), and takes the following form (Yang et al., 2007;
Mochnacki and Majchrzak, 2007)

Qevap(T ) = L
∂W

∂t
= L

dW

dT

∂T

∂t
(2.9)

where L is the latent heat of water vaporization and W is the water volumetric fraction in the
tissue domain. Thus

Qevap(T ) + τq
∂Qevap(T )

∂t
= L

dW

dT

∂T

∂t
+ τqL

[d2W
dT 2

(∂T
∂t

)2
+
dW

dT

∂2T

∂t2

]
(2.10)

Introducing dependence (2.10) into the dual-phase lag equation (2.8), one obtains

[
C(T )− L

dW

dT

]∂T
∂t
+ τq
[
C(T )− L

dW

dT

]∂2T
∂t2
+ τq
[dC(T )

dT
− L

d2W

dT 2

](∂T
∂t

)2

= div
[
λ(T ) gradT

]
+ τT div

[
λ(T )

∂( gradT )

∂t

]
+Q+ τq

∂Q

∂t

(2.11)

or

Ĉ(T )
(∂T
∂t
+ τq

∂2T

∂t2

)
+ τq

dĈ(T )

dT

(∂T
∂t

)2

= div
[
λ(T ) gradT

]
+ τT div

[
λ(T )

∂( gradT )

∂t

]
+Q+ τq

∂Q

∂t

(2.12)



392 M. Stryczyński, E. Majchrzak

where

Ĉ = C(T )− L
dW

dT
(2.13)

is the effective volumetric specific heat (substitute thermal capacity).
Equation (2.12) is supplemented by boundary condition (Majchrzak and Stryczyński, 2022)

(r, z) ∈ Γ ∪ Γ0 : −λ(T )
(
n · gradT + τTn · grad

∂T

∂t

)
= 0 (2.14)

where n is the normal outward vector, Γ0 is the axis of the cylinder, and Γ is the outer surface
of the cylinder.
The initial conditions are also known

t = 0 T = Tp
∂T

∂t
=
Q(Tp)

Ĉ(Tp)
(2.15)

where Tp is the initial temperature of tissue.
As mentioned earlier, in soft tissues, the scattering dominates over absorption for wavelengths

from 650 to 1300 nm, and then the source function Qext related to laser irradiation appearing
in Eq. (2.12) (c.f. formula (2.5)) is of the form (Jasiński et al., 2016)

Qext(r, z, t) = µaφ(r, z)p(t) (2.16)

where µa is the absorption coefficient, φ(r, z) is the total light fluence rate and p(t) is the function
equal to 1 when laser is on and equal to 0 when laser is off .
The total light fluence φ(r, z) is the sum of collimated part φ(r, z) and diffuse part φd(r, z)

(Abraham and Sparrow, 2007; Jasiński et al., 2016)

φ(r, z) = φc(r, z) + φd(r, z) (2.17)

In the case of soft tissues, in order to determine the diffuse fluence rate, the steady-state optical
diffusion equation (Dombrovsky et al., 2012; Kim et al., 2007) should be solved

(r, z) ∈ Ω : div [D gradφd(r, z)] − µaφd(r, z) + µ
′

sφc(r, z) = 0 (2.18)

where

D =
1

3[µa + (1− g)µs]
(2.19)

and µ′s = (1− g)µs is the effective scattering coefficient (µs is the scattering coefficient, g is the
anisotropy factor).
Equation (2.18) is supplemented by the boundary conditions

−Dn · gradφd(r, z) =






φd(r, z)

2
for (r, z) ∈ Γ

0 for (r, z) ∈ Γ0

(2.20)

The collimated fluence rate is given as (Zhou et al., 2009)

φc(r, z) = I0 exp(−µ
′

tz) exp
(
−
r2

r2D

)
(2.21)

where I0 is the surface irradiance of laser, rD is the radius of laser beam, and µ
′

t is the attenuation
coefficient defined as

µ′t = µa + µ
′

s (2.22)
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It should be pointed out that the optical parameters depend on the degree of tissue damage
described by the Arrhenius integral, and take the form (Fasano et al., 2010)

µa = µa(ψ) = exp(−ψ)µa,n + [1− exp(−ψ)]µa,c

µs = µs(ψ) = exp(−ψ)µs,n + [1− exp(−ψ)]µs,c

g = g(ψ) = exp(−ψ)gn + [1− exp(−ψ)]gc

(2.23)

where the indexes n and c represent the tissue in its natural and coagulated state.
Summing up, at first, equation (2.18) supplemented by boundary conditions (2.20) and next

dual-phase lag equation (2.12) with boundary condition (2.14) and initial conditions (2.15),
should be solved.

3. Method of solution

First, optical diffusion equation (2.18) is considered. For a cylindrical co-ordinate system, we
have

div (D grad ) =
1

r

∂

∂r

(
rD

∂φd
∂r

)
+

∂

∂z

(
D
∂φd
∂z

)
(3.1)

After determining the appropriate derivatives, one obtains

div (D grad ) =
1

r
D
∂φd
∂r
+D
(∂2φd
∂r2
+
∂2φd
∂z2

)
+
∂D

∂r

∂φd
∂r
+
∂D

∂z

∂φd
∂z

(3.2)

Since the diffusion coefficient D (Eq. (2.19)) depends on the parameters µa, µs and g, the
parameters µa, µs, g depend on the Arrhenius integral (Eq. (2.23)), and the Arrhenius integral
depends on temperature (Eq. (2.6)), the derivatives ∂D/∂r and ∂D/∂z are calculated using the
chain rule

∂D

∂r
=
∂D

∂µa

∂µa
∂ψ

∂ψ

∂T

∂T

∂r
+
∂D

∂µs

∂µs
∂ψ

∂ψ

∂T

∂T

∂r
+
∂D

∂g

∂g

∂ψ

∂ψ

∂T

∂T

∂r

=
( ∂D
∂µa

∂µa
∂ψ
+
∂D

∂µs

∂µs
∂ψ
+
∂D

∂g

∂g

∂ψ

)∂ψ
∂T

∂T

∂r
= P

∂T

∂r

(3.3)

and

∂D

∂z
=
( ∂D
∂µa

∂µa
∂ψ
+
∂D

∂µs

∂µs
∂ψ
+
∂D

∂g

∂g

∂ψ

)∂ψ
∂T

∂T

∂z
= P

∂T

∂z
(3.4)

where

P =
( ∂D
∂µa

∂µa
∂ψ
+
∂D

∂µs

∂µs
∂ψ
+
∂D

∂g

∂g

∂ψ

)∂ψ
∂T

(3.5)

Finally, Eq. (2.18) can be written in the form

1

r
D
∂φd
∂r
+D
(∂2φd
∂r2
+
∂2φd
∂z2

)
+ P
(∂T
∂r

∂φd
∂r
+
∂T

∂z

∂φd
∂z

)
− µaφd + µ

′

sφc = 0 (3.6)

Optical diffusion equation (3.6) is solved using the finite difference method (FDM). The
differential grid is shown in Fig. 2. For the internal nodes (i, j), where i = 1, 2, . . . ,m − 1 and
j = 1, 2, . . . , n− 1, the following FDM approximation of this equation is proposed

1

ri,j
Dfi,j

φfd,i+1,j − φ
f
d,i−1,j

2h
+Dfi,j

φfd,i−1,j − 2φ
f
d,i,j + φ

f
d,i+1,j

h2

+Dfi,j
φfd,i,j−1 − 2φ

f
d,i,j + φ

f
d,i,j+1

h2
+ Pi,j

T fi+1,j − T
f
i−1,j

2h

φfd,i+1,j − φ
f
d,i−1,j

2h

+ Pi,j
T fi,j+1 − T

f
i,j−1

2h

φfd,i,j+1 − φ
f
d,i,j−1

2h
− µfa,i,jφ

f
d,i,j + µ

′f
s,i,jφc,i,j = 0

(3.7)



394 M. Stryczyński, E. Majchrzak

Fig. 2. Differential mesh

or

φfd,i,j =
1

ri,j
Dfi,j

φfd,i+1,j − φ
f
d,i−1,j

2hGfi,j
+Dfi,j

φfd,i−1,j + φ
f
d,i+1,j + φ

f
d,i,j−1 + φ

f
d,i,j+1

h2Gfi,j

+ P fi,j
T fi+1,j − T

f
i−1,j

2hGfi,j

φfd,i+1,j − φ
f
d,i−1,j

2h

+ P fi,j
T fi,j+1 − T

f
i,j−1

2hGfi,j

φfd,i+1,j − φ
f
d,i−1,j

2h
+
µ′fs,i,j

Gfi,j
φc,i,j

(3.8)

where

Gfi,j = 4
Dfi,j
h2
+ µfa,i,j (3.9)

Boundary conditions (2.20) are approximated in a similar way, and then:
— for j = 0, i = 1, 2, . . . ,m− 1

φfd,i,j =
2Dfi,j

2Dfi,j + h
φfd,i,j+1 (3.10)

— for j = n, i = 1, 2, . . . ,m− 1

φfd,i,j =
2Dfi,j

2Dfi,j + h
φfd,i,j−1 (3.11)

— for i = 0, j = 1, 2, . . . , n− 1

φfd,i,j = φ
f
d,i+1,j (3.12)

— for i = m, j = 1, 2, . . . , n− 1

φfd,i,j =
2Dfi,j

2Dfi,j + h
φfd,i−1,j (3.13)

It should be pointed out that the f index means that the optical diffusion equation due to
variable optical parameters must be solved at each time step. To summarize the algorithm, at
each time step, the values of optical parameters dependent on the Arrhenius integral (Eqs. (2.23))
are calculated. The collimated part of the light fluence is determined (Eq. (2.21)) and the diffuse
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part is determined by solving the system of Eqs. (3.8)-(3.13). This system was solved using the
iterative Gaussian method. Then, the source component Qext is calculated from formula (2.16).
Now, the method of solving the dual-phase lag equation will be presented. Equation (2.12)

can be written in the form (c.f. formula (2.5))

Ĉ(T )
(∂T
∂t
+ τq

∂2T

∂t2

)
+ τq

dĈ(T )

dT

(∂T
∂t

)2
= div

[
λ(T ) gradT

]

+ τT div
[
λ(T )

∂( gradT )

∂t

]
+ w(ψ)cb(Ta − T ) +Qmet(ψ) +Qext

+ τq
(dw(ψ)

dψ

∂ψ

∂t
cb(Ta − T )− w(ψ)cb

∂T

∂t
+
dQmet(ψ)

dψ

∂ψ

∂t
+
∂Qext
∂t

)
(3.14)

or

[Ĉ(T ) + τqw(ψ)cb]
∂T

∂t
+ τqĈ(T )

∂2T

∂t2
+ τq

dĈ(T )

dT

(∂T
∂t

)2

= div [λ(T ) gradT ] + τT div
[
λ(T )

∂( gradT )

∂t

]
+ w(ψ)cb(Ta − T )

+Qmet(ψ) +Qext + τq
(dw(ψ)

dψ

∂ψ

∂t
cb(Ta − T ) +

dQmet(ψ)

dψ

∂ψ

∂t
+
∂Qext
∂t

)
(3.15)

where (Majchrzak and Stryczyński, 2022)

div [λ(T ) gradT ] + τT div
[
λ(T ) grad

∂T

∂t

]
=
1

r
λ(T )

[∂T
∂r
+ τT

∂

∂r

(∂T
∂t

)]

+
dλ(T )

dT

∂T

∂r

[∂T
∂r
+ τT

∂

∂r

(∂T
∂t

)]
+ λ(T )

[∂2T
∂r2
+ τT

∂2

∂r2

(∂T
∂t

)]

+
dλ(T )

dT

∂T

∂z

[∂T
∂z
+ τT

∂

∂z

(∂T
∂t

)]
+ λ(T )

[∂2T
∂z2
+ τT

∂2

∂z2

(∂T
∂t

)]

(3.16)

To solve Eq. (3.15), the implicit scheme of the finite difference method is used. For internal node
(i, j), i = 1, 2, . . . ,m−1, j = 1, 2, . . . , n−1 and transition tf → tf+1, the following approximation
of operator (3.16) is obtained (Majchrzak and Stryczyński, 2022)

div [λ(T ) gradT ]f+1i,j + τT div
[
λ(T ) grad

∂T

∂t

]f+1
i,j
= Afi,j

(
1−

h

2ri,j

)
T f+1i−1,j

+Afi,j

(
1 +

h

2ri,j

)
T f+1i+1,j +A

f
i,j(T

f+1
i,j−1 + T

f+1
i,j+1)− 4A

f
i,jT
f+1
i,j +B

f
i,j

(3.17)

where

Afi,j =
λfi,j(∆t+ τT )

h2∆t
(3.18)

and

Bfi,j = −
λfi,jτT

h2∆t
(T fi−1,j + T

f
i+1,j + T

f
i,j−1 + T

f
i,j+1 − 4T

f
i,j)−

λfi,jτT

2hri,j∆t
(T fi+1,j − T

f
i−1,j)

+
1

4h2∆t

(dλ(T )
dT

)f
i,j
[(∆t+ τT )(T

f
i+1,j − T

f
i−1,j)

2
− τT (T

f
i+1,j − T

f
i−1,j)(T

f−1
i+1,j − T

f−1
i−1,j)]

+
1

4h2∆t

(dλ(T )
dT

)f
i,j
[(∆t+ τT )(T

f
i,j+1 − T

f
i,j−1)

2
− τT (T

f
i,j+1 − T

f
i,j−1)(T

f−1
i,j+1 − T

f−1
i,j−1)]

(3.19)

while ∆t is the time step.
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The approximation of the left-hand side of Eq. (3.15) is the following

{

[Ĉ(T ) + τqw(ψ)cb]
∂T

∂t
+ τqĈ(T )

∂2T

∂t2
+ τq

dĈ(T )

dT

(∂T
∂t

)2
}f+1

i,j

= (Ĉfi,j + w
f
i,jcb)

T f+1i,j − T
f
i,j

∆t
+ τqĈ

f
i,j

T f+1i,j − 2T
f
i,j + T

f−1
i,j

(∆t)2

+ τq
(dĈ(T )

dT

)f
i,j

(T fi,j − T
f−1
i,j

∆t

)2

(3.20)

Thus, one obtains finally the approximation of Eq. (3.15) in the form

(Ĉfi,j + τqw
f
i,jcb)

T f+1i,j − T
f
i,j

∆t
+ τqĈ

f
i,j

T f+1i,j − 2T
f
i,j + T

f−1
i,j

(∆t)2

+ τq
(dĈ(T )

dT

)f
i,j

(T fi,j − T
f−1
i,j

∆t

)2
= Afi,j

(
1−

h

2ri,j

)
T f+1i−1,j +A

f
i,j

(
1 +

h

2ri,j

)
T f+1i+1,j

+Afi,j(T
f+1
i,j−1 + T

f+1
i,j+1)− 4A

f
i,jT
f+1
i,j − cb

[
wfi,j + τq

(dw(ψ)
dψ

∂ψ

∂t

)f
i,j

]
T f+1i,j +D

f
i,j

(3.21)

where

Dfi,j = B
f
i,j + w

f
i,jcbTa + (Qmet)

f
i,j + (Qext)

f
i,j

+ τq
[(dw(ψ)

dψ

∂ψ

∂t

)f
i,j
cbTa +

(dQmet(ψ)
dψ

∂ψ

∂t

)f
i,j
+
(∂Qext

∂t

)f
i,j

] (3.22)

From Eq. (3.21), it results

T f+1i,j =
Afi,j

F fi,j

(
1−

h

2ri,j

)
T f+1i−1,j +

Afi,j

F fi,j

(
1 +

h

2ri,j

)
T f+1i+1,j +

Afi,j

F fi,j
(T f+1i,j−1 + T

f+1
i,j+1) +

Efi,j

F fi,j
(3.23)

where

Efi,j = D
f
i,j +
(Ĉfi,j + τqw

f
i,jcb)∆t+ 2τqĈ

f
i,j

(∆t)2
T fi,j −

Ĉfi,jτq

(∆t)2
T f−1i,j − τq

(dĈ(T )
dT

)f
i,j

(T fi,j − T
f−1
i,j

∆t

)2

F fi,j =
(Ĉfi,j + τqw

f
i,jcb)∆t+ τqĈ

f
i,j

(∆t)2
+ 4Afi,j + cb

[
wfi,j + τq

(dw(ψ)
dψ

∂ψ

∂t

)f
i,j

]
(3.24)

Boundary condition (2.14) should also be approximated (Majchrzak and Stryczyński, 2022).
At each time step, the system of equations (3.23) is solved using the Gauss-Seidl iterative

method.

4. Results of computations

An axisymmetric fragment of the biological tissue (liver) of dimensions R = 0.02m and
Z = 0.02m is considered (Fig. 2).
To solve modified dual-phase lag Eq. (2.12), the temperature dependence of water content is

needed. Based upon experiments that the measured water content as a function of temperature,
the following dependence is used (Yang et al., 2007)

W (T ) = 0.778






1− exp
(T − 106
3.42

)
for T ¬ 103◦C

S(T ) for 103◦C ¬ T ¬ 104◦C

exp
(−(T − 80)
34.37

)
for T ­ 104◦C

(4.1)
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where S(T ) is a cubic C1 spline between two exponential functions, and has the following form

S(T ) = −4.05821416 · 104 + 1.18204602 · 103T − 11.4752357T 2 + 3.71298243 · 10−2T 3 (4.2)

In Fig. 3, the course of function W (T ) is shown. As can be seen, the water content of the soft
tissue is approximately 77.8% by volume and remains almost constant until the phase transi-
tion temperature is reached. As the temperature increases further, the water content gradually
decreases down to approximately 20% of the volume at 130◦C.

Fig. 3. The water content in soft tissue as a function of temperature

The temperature-dependent thermal conductivity and volumetric specific heat of the liver
tissue are taken from Lopresto et al. (2019)

λ(T ) =






0.5075 + 5.6261 · 10−51T 25.296 for T ¬ 99◦C

Sλ(T ) for 99◦C ¬ T ¬ 101◦C

55.44 − 0.99701T + 4.4988 · 10−3T 2 for T ­ 101◦C

C(T ) =






3.3012 +
3.6186

100− T
for T ¬ 99◦C

SC(T ) for 99◦C ¬ T ¬ 101◦C

90.808 − 1.5491T + 6.6664 · 10−3T 2 for T ­ 101◦C

(4.3)

where Sλ(T ) and SC(T ) are the cubic C
1 splines.

Tissue destruction significantly affects the blood flow process. Abraham and Sparrow (2007)
presented the following relationship between the blood perfusion rate and the degree of tissue
damage

w(ψ) =






(1 + 25ψ − 260ψ2)wb0 for 0 ¬ ψ ¬ 0.1

(1− ψ)wb0 for 0.1 ¬ ψ ¬ 1

0 for ψ ­ 1

(4.4)

where wb0 = 0.5 kg/(m
3s) is the baseline value of the blood perfusion rate.

A similar relationship is assumed for the metabolic term (Abraham and Sparrow, 2007)

Qmet(ψ) =






(1 + 25ψ − 260ψ2)Qm0 for 0 ¬ ψ ¬ 0.1

(1− ψ)Qm0 for 0.1 ¬ ψ ¬ 1

0 for ψ ­ 1

(4.5)

where Qm0 = 245W/m
3 is the baseline value of the metabolic heat source.
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The remaining data used at the stage of numerical computations are collected below: initial
temperature Tp = 37

◦C, relaxation time τq = 4 s, thermalization time τT = 2 s, optical pa-
rameters: µa,n = 195 1/m, µa,c = 13 1/m, µs,n = 4350 1/m, µs,c = 30590 1/m, gn = 0.0931 and
gc = 0.09165 (Fasano et al., 2010), specific heat of blood cb = 3770 J/(kgK), arterial temperature
Ta = 37

◦C, radius of laser beam rD = 0.001m. In the Arrhenius integral (2.6): P = 7.39·10
37 1/s,

E = 2.58 · 105 J/mol, R = 8.314 J/(molK) (Szasz et al., 2011).
The computations were performed for the difference mesh m = n = 100 nodes using the time

step ∆t = 0.0005 s until reaching the observation time, which was set to 150 seconds.
Before proceeding to the detailed analysis, calculations were performed for both constant

and Arrhenius integral-dependent optical parameters in order to investigate the difference in
temperature profiles. It was assumed that the laser operated for 120 s with power I0 = 1.33 ·
105W/m2.
A comparison of the results for constant and variable optical parameters is shown in Fig. 4

in the form of temperature profiles at the point with coordinates (0.0002m, 0.0002m). As can
be seen, in the case of variable optical parameters, a much lower temperature was achieved.
This is due to significant changes in the values of tissue scattering and absorption coefficients
in the coagulated and natural state. The temperature difference is significant. It can, therefore,
be concluded that in the case of high-temperature hyperthermia, it is important to take into
account the optical parameters of the tissue that change with the Arrhenius integral. Otherwise,
overestimated temperatures may be obtained, which may lead to incorrect predictions of tissue
damage.

Fig. 4. Temperature history for constant and variable optical parameters, I0 = 1.33 · 10
5W/m2,

exposure time 120 s – point (0.0002m, 0.0002m)

Then, calculations were performed for three different laser irradiation powers: I0 = 1.33 ·
105W/m2, I0 = 2 · 10

5W/m2 and I0 = 2.5 · 10
5W/m2 with an exposure time of 120 s. The

temperature profiles marked with a dashed line in Fig. 5 correspond to the model using the
function W (T ), while the solid line refers to the model without the function taking into account
the percentage of water content in the tissue. As observed, at low laser powers, there are no
significant differences between the obtained temperatures. However, the discrepancies increase
as I0 increases. The greatest differences occur at the moment when the maximum temperature is
reached. Taking into account the process of water evaporation gives lower temperatures, which
is related to the release of the latent heat of evaporation of water. In later stages of the process,
the temperature profiles become equal again.
Further computations were carried out for higher laser powers, namely: I0 = 5 · 10

5W/m2,
I0 = 10·10

5W/m2, I0 = 15·10
5W/m2, I0 = 20·10

5W/m2 and I0 = 25·10
5W/m2 with the same

exposure time 120 s. In Fig. 6, the temperature history at the point (0.0002m, 0.002m) for all
variants of computations is shown. For high laser powers, the temperature at this point exceeds
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Fig. 5. Temperature history for different laser powers with a zero and non-zero W (T ) function –
point (0.0002m, 0.0002m), exposure time 120 s

Fig. 6. Temperature history for different laser powers – exposure time 120 s – point (0.0002m, 0.0002m)

Fig. 7. Temperature distribution after 60 s and 120 s, I0 = 25 · 10
5W/m2, exposure time 120 s

Fig. 8. Arrhenius integral distribution after 60 s and 120 s, I0 = 25 · 10
5W/m2, exposure time 120 s



400 M. Stryczyński, E. Majchrzak

100◦C, and the water contained in the tissue undergoes an intensive evaporation process. In
Figs. 7 and 8, the temperature and Arrhenius integral distributions in the domain for the time
60 s and 120 s are shown. It is clearly visible that for the laser power I0 = 25 · 10

5W/m2, the
region of complete tissue destruction is quite large (e.g. for 60 s) and increases as the heating
process continues (e.g. for 120 s).

5. Conclusions

The presented method of modeling of interactions of laser with biological tissue is based on the
dual-phase lag equation coupled with the optical diffusion equation. The equations considered
take into account thermophysical parameters of tissue that change with temperature and the
optical parameters of biological tissue that change with the Arrhenius integral. It has been shown
that in the modeling of high-temperature hyperthermia, it is important to use variable optical
parameters of the tissue. The use of constant optical parameters leads to excessive temperatures,
which may result in an inaccurate assessment of the degree of damage to biological tissues,
which may consequently affect the correct planning of artificial hyperthermia treatments. An
important element of the computations is the analysis of water percentage in the tissue. Taking
into account the functionW (T ) allows for modeling of the evaporation process. The evaporation
of water and other fluids from the tissue significantly affects the obtained temperature values
and, consequently, the size of the estimated domain of damage.
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